
Simplifying Multimedia Programming for Novice Programmers:
MediaLib and Its Learning Materials

Adam Wynn
Durham University

Durham, United Kingdom
adam.t.wynn@durham.ac.uk

Jingyun Wang
Durham University

Durham, United Kingdom
jingyun.wang@durham.ac.uk

Andrea Valente
University of Southern Denmark

Odense, Denmark
anva@mmmi.sdu.dk

ABSTRACT
Beginner programmers can develop an intuitive understanding of
programming by leveraging the motivating field of multimedia to
visually inspect outputs and experiment with different ways to
solve problems. This paper presents MediaLib, a Python library
designed to facilitate multimedia programming and lessen the cog-
nitive load associated with programming for novice programmers.
In addition, we designed an official MediaLib website which con-
tains the library itself, two tutorials, and clear documentation. The
tutorial clearly presents the learning objectives of each lesson and
contains exercises related to MediaLib. We designed these exercises
to help students gain knowledge incrementally, without requiring
in-depth maths knowledge.

CCS CONCEPTS
• Social and professional topics → Computational thinking;
Computer science education; • General and reference → Em-
pirical studies.

KEYWORDS
multimedia programming, beginners, Python, programming skills,
computational thinking, library, teaching materials
ACM Reference Format:
Adam Wynn, Jingyun Wang, and Andrea Valente. 2024. Simplifying Multi-
media Programming for Novice Programmers: MediaLib and Its Learning
Materials. In Proceedings of the 2024 Innovation and Technology in Computer
Science Education V. 2 (ITiCSE 2024), July 8–10, 2024, Milan, Italy. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3649405.3659521

1 INTRODUCTION
Computational thinking (CT) is a way of thinking that involves
breaking down complex problems into smaller parts, focusing on
the relevant information [12]. One of the core concepts of CT is
abstraction, which is the process of ignoring some irrelevant details
of problems that are not needed in order to focus on the essential
ones [1]. Despite abstraction being a key skill helping learners
to focus on the important features, some of the existing teaching
materials are designed without considering this pedagogical theory,
making novice learners reluctant to accept CT [9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE 2024, July 8–10, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0603-5/24/07
https://doi.org/10.1145/3649405.3659521

Therefore, ameaningful pedagogical tool for CT education should
be accessible to all types of learners, and adaptable to different levels
of difficulty and complexity [3]. Block-based tools such as Scratch
[7] help learners from different domains to build knowledge about
programming concepts relieving learners from having to write code
on their own. Block-based programming allows learners to focus
on problem-solving logic rather than syntax, facilitating computa-
tional problem-solving [2]. However, beyond introductory contexts,
it is difficult for learners to develop transferable skills and a deeper
understanding of programming languages required when learning
specific programming languages such as Python to solve real-world
problems [3].

Therefore, text-based languages may be more suitable for prepar-
ing learners to use existing programming libraries [10], as they
enforce syntax, structure, and logic rules. Dual-modality environ-
ments, such as Blockly, Phaser, P5, and Processing, integrate block-
based and text-based features into a single interface, providing
scaled-down views of professional programming languages. Guz-
dial et al. [4] developed a course aiming at teaching introductory
programming to non-technical students focusing on media com-
putation to provide a more engaging learning experience to these
students. Students primarily completed tasks such as manipulat-
ing images, music, and video. Whilst effective in providing an in-
teractive learning experience, their approach primarily involved
students modifying existing programs rather than developing code
from scratch.

These text-based environments, along with teaspoon languages,
present challenges for tool creators in deciding which functions
to simplify for beginners without causing confusion during the
transition to advanced languages [5]. To address these issues, we
introduce MediaLib, which offers a simplified version of Python
to familiarize beginners with the language and enable them to cre-
ate programs from scratch using a small number of predefined
functions and basic Python concepts, expanding beyond media
computation across different domains beyond manipulating me-
dia. The design of Medialib is intended to bridge the gap between
existing block-based and text-based programming languages by
means of enabling learners to work in a traditional programming
environment.

In this paper, we present a Python library called MediaLib (https:
//medialib.club/) and its exercises designed to aid beginners in prac-
ticing Python syntax incrementally with the support of multimedia.
MediaLib is a novel way to structure beginners’ Python courses
which moves away from the classic approaches based on math-
related problems and leverages multimedia as a motivational and
powerful general-purpose domain to ground programming and
scaffold its understanding.

https://orcid.org/0000-0002-1631-2151
https://orcid.org/0000-0001-9325-1789
https://orcid.org/0000-0002-6295-9511
https://doi.org/10.1145/3649405.3659521
https://doi.org/10.1145/3649405.3659521
https://medialib.club/
https://medialib.club/


ITiCSE 2024, July 8–10, 2024, Milan, Italy Adam Wynn, Jingyun Wang, and Andrea Valente

2 DESIGN OF MEDIALIB AND ITS WEBSITE
MediaLib’s design is centered around simplifying Python to a core
fragment, retaining imperative features like sequences, primitive
datatypes, choice, and iteration. The reduced Python fragment is
then extended to multimedia by introducing minimal instructions
for drawing images, controlling timing, and user interaction. The
design principles emphasise sequential execution, basic variable
types, absence of event handling for simplicity, and supporting
a use-modify-create approach. To avoid mental overload for be-
ginners, we minimised the number of functions in MediaLib. The
current version (3.0), consists of 11 void functions and 8 fruitful
functions, allowing learners to engage with graphics, text, input,
other multimedia elements, and more advanced utility functions.

MediaLib exercises, which are available on the MediaLib website
(https://medialib.club/tutorials) introduce fundamental concepts
such as variables and functions, gradually incorporating iterative
and conditional statements to create animations. Rather than re-
lying on deep mathematical knowledge, these exercises focus on
multimedia effects, providing a hands-on approach for learners
to develop programming logic. The exercises not only promote
understanding of MediaLib functions like draw() and clear() but
also allow for the use of MediaLib with external libraries such as
reading data from and saving data to csv files using Pandas [8]
[11] for game development scenarios, or using Matplotib [6] for
visualisation purposes. We aim to create interactive and engaging
experiences by incorporating elements from other fields including
game development to help learners develop more versatile skills.

As shown in Figure 1, the learning objectives of each MediaLib
exercise were clearly stated at the beginning of the exercise in the
tutorial, with images, animations, code snippets, and links to the
documentation. For each MediaLib exercise, beginners need to use
no more than three MediaLib functions to solve the problem.

Figure 1: An example of an exercise on the MediaLib website.

Moreover, we have designed two tutorials: 1) a tutorial for non-
technical (specifically addressing business analytics master) stu-
dents featuring exercises related to MediaLib with simpler math-
ematical content, and 2) a tutorial designed for computer science
students who are Python beginners and contains exercises related

to both MediaLib and programming logic. The tutorial for non-
technical students includes topics such as Variables, Void and Fruit-
ful Functions, Conditional Statements, For Loops, While Loops, and
Lists, whereas the tutorial for computer science students includes
topics such as Lists, Libraries, Conditional Statements, Multiple
Branching, For Loops, Nested Loops, While Loops, Dictionaries and
Tuples, and File Operations.

3 CONCLUSION
Overall, MediaLib has the potential to support novice program-
mers in an introductory university course by providing motivating,
visual exercises that aid comprehension and application of program-
ming basics. The future improvement of MediaLib does not aim to
expand its scope to cover all aspects of Python programming or
to support specific Python libraries. Instead, MediaLib is designed
as a pedagogical tool specifically for beginners to enhance their
problem-solving skills in Python and gradually acquaint themselves
with the language syntax. The intention is for learners to use Me-
diaLib for a limited time span, allowing them to become familiar
with the fundamentals of Python.

The tutorials can be used to alleviate the burden on teachers in
various ways. Providing clear learning objectives and related exer-
cises for each tutorial lesson can enable teachers to easily identify
learning goals in a logical sequence, and linking the tutorial directly
to the documentation reduces the need for the teacher to spend
time explaining the functions. The inclusion of images, animations
and code snippets in the tutorial easily demonstrated programming
concepts to students without requiring further explanations from
the teacher.

REFERENCES
[1] Valerie Barr and Chris Stephenson. 2011. Bringing computational thinking to

K-12: what is Involved and what is the role of the computer science education
community? ACM Inroads 2 (03 2011). https://doi.org/10.1145/1929887.1929905

[2] Eugene Geist. 2016. Robots, programming and coding, oh my! Child. Educ. 92, 4
(July 2016), 298–304.

[3] Shuchi Grover and Roy Pea. 2013. Computational Thinking in K–12 A Review of
the State of the Field. Educational Researcher 42 (02 2013), 38–43.

[4] Mark Guzdial. 2003. A media computation course for non-majors. SIGCSE Bull.
35, 3 (jun 2003), 104–108. https://doi.org/10.1145/961290.961542

[5] MarkGuzdial. 2022. Teaspoon Languages for Integrating Programming into Social
Studies, Language Arts, andMathematics Secondary Courses. In Proceedings of the
53rd ACM Technical Symposium on Computer Science Education V. 2 (Providence,
RI, USA) (SIGCSE 2022). Association for Computing Machinery, New York, NY,
USA, 1027. https://doi.org/10.1145/3478432.3499240

[6] J. D. Hunter. 2007. Matplotlib: A 2D graphics environment. Computing in Science
& Engineering 9, 3 (2007), 90–95. https://doi.org/10.1109/MCSE.2007.55

[7] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The Scratch Programming Language and Environment. ACM Trans.
Comput. Educ. 10, 4, Article 16 (nov 2010), 15 pages.

[8] The pandas development team. 2020. pandas-dev/pandas: Pandas. https://doi.
org/10.5281/zenodo.3509134

[9] Yingxiao Qian and Ikseon Choi. 2022. Tracing the essence: ways to develop
abstraction in computational thinking. Educational technology research and
development 71, 3 (2022), 1055–1078. https://doi.org/10.1007/s11423-022-10182-0

[10] David Weintrop and Uri Wilensky. 2019. Transitioning from introductory block-
based and text-based environments to professional programming languages in
high school computer science classrooms. Computers Education 142 (2019),
103646. https://doi.org/10.1016/j.compedu.2019.103646

[11] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, Stéfan van derWalt and Jarrod
Millman (Eds.). 56 – 61. https://doi.org/10.25080/Majora-92bf1922-00a

[12] Jeannette M. Wing. 2006. Computational thinking. Commun. ACM 49, 3 (mar
2006), 33–35. https://doi.org/10.1145/1118178.1118215

https://medialib.club/tutorials
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1145/961290.961542
https://doi.org/10.1145/3478432.3499240
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1007/s11423-022-10182-0
https://doi.org/10.1016/j.compedu.2019.103646
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1145/1118178.1118215

	Abstract
	1 Introduction
	2 Design of MediaLib and its Website
	3 Conclusion
	References

